首页> 外文OA文献 >Flight Extraction and Phase Identification for Large Automatic Dependent Surveillance–Broadcast Datasets
【2h】

Flight Extraction and Phase Identification for Large Automatic Dependent Surveillance–Broadcast Datasets

机译:大型自动相关监视广播数据集的飞行提取和相位识别

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

AUTOMATIC dependent surveillance–broadcast (ADS-B) [1,2] is widely implemented in modern commercial aircraft and will become mandatory equipment in 2020. Flight state information such as position, velocity, and vertical rate are broadcast by tens of thousands of aircraft around the world constantly using onboard ADS-B transponders. These data are identified by a 24-bit International Civil Aviation Organization (ICAO) address, are unencrypted, and can be received and decoded with simple ground station set-ups. This large amount of open data brings a huge potential for ATM research. Most studies that rely on aircraft flight data (historical or real-time) require knowledge on the flight phase of each aircraft at a given time [3–7]. However, when dealing with large datasets such as from ADS-B, which can contain many tens of thousands of flights, exceptions to deterministic definitions of flight phases are inevitable, due to large variances in climb rate, altitude, velocity, or a combination of these. In this case, instead of using deterministic logic to process and extract flight data based on flight conventions, robust and versatile identification algorithms are required. In this paper, a twofold method is proposed and tested: 1) a machine learning clustering step that can handle large amounts of scattered ADS-B data to extract continuous flights, and 2) a flight phase identification step that can segment flight data of any type of aircraft and trajectory by different flight phases.
机译:自动相关广播监视(ADS-B)[1,2]在现代商用飞机中得到广泛实施,并将在2020年成为强制性设备。成千上万架飞机广播飞行状态信息,例如位置,速度和垂直速率世界各地不断使用机载ADS-B应答器。这些数据由24位国际民航组织(ICAO)地址标识,未加密,可以通过简单的地面站设置进行接收和解码。大量的开放数据为ATM研究带来了巨大的潜力。大多数依赖飞机飞行数据(历史或实时)的研究都要求在给定时间了解每架飞机的飞行阶段[3-7]。但是,当处理大型数据集(例如来自ADS-B的数据集)时,可能包含成千上万次飞行,因此不可避免地会出现飞行阶段确定性定义的例外情况,原因是爬升率,高度,速度或这些。在这种情况下,需要使用鲁棒且通用的识别算法,而不是使用确定性逻辑来基于飞行惯例来处理和提取飞行数据。在本文中,提出了一种双重方法并进行了测试:1)机器学习聚类步骤,可以处理大量分散的ADS-B数据以提取连续航班,以及2)飞行阶段识别步骤,可以对任何不同飞行阶段的飞机类型和轨迹。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号